The Role of Pellet Thermal Stability in Reactor Design for Heterogeneously Catalysed Chemical Reactions

نویسنده

  • R. J. WIJNGAARDEN
چکیده

For exothermic fluid-phase reactions, a reactor which is cooled at the wall can exhibit multiplicity or parametric sensitivity_ Moreover, for heterogeneously catalyaed exothermic fluid-phase reactions, each of the catalytically active pellets in the reactor can exhibit multiplicity. Both forms of multiplicity can lead to thermal instability and as such have to he taken into account in reactor design. Here the effect of both instabilities is quantiiied. To this end, simple first-order kinetics are assumed, and intraparticle resistances and reactor and particle dynamic are not considered. A one-dimensional model, consisting of microscale mass and heat balances, is chosen to describe the reactor. It is assumed that the fluid inlet temperature equals the coolant temperature. The pellet scale model is a combined mass and heat balance for the pellet and it assumes that the Chilton-Colburn analogy holds. For its incorporation in the reactor model it is assumed that for every individual pellet heat removal to neighbouring pellets via the mutual contact spots is negligible as compared to the heat transferred to the surrounding fluid. Consequently every pellet is isolated from its neighbours. In the thermally most critical region, i.e. the hot-spot region, reactor stability is determined by three parameter groups: a dimensionless adiabatic temperature rise, an Arrhenius number or dimensionless activation temperature and the ratio of the number of heat transfer units to the number of reaction units. For pellet multiplicity, a fourth parameter group becomes sign&ant in addition: the ratio of the reaction rate to the pellet mY5ttin transfer rate. This number depends on the pellet size. A general recipe is given which enables us to dete e whether or not pellet thermal instability can become important in reactor operation. For the situation where it is sign&ant, generalized diagrams are presented indicating which pellet sixes problems must be expected due to pellet multiplicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of a Chemical Reactor with Chaotic Dynamics

In this paper, control of a non-isothermal continuous stirred tank reactor in which two parallel autocatalytic reactions take place has been addressed. The reactor shows chaotic behavior for a certain set of reactor parameters. In order to control the product concentration, an optimal state feedback controller has been designed. Since concentrations of reactor species are ...

متن کامل

Olefin Production from Heavy Liquid Hydrocarbon Thermal Cracking: Kinetics and Product Distribution

Thermal cracking of a heavy liquid hydrocarbon was performed in a laboratory scale tubular reactor. Central Composite Design (CCD), was used as an experimental design method. The design variables were Coil Outlet Temperature (COT), feed flow and rate steam ratio. Maximum yield of ethylene was 30.37 wt% at COT, residence time and steam ratio of 869oC, 0.208 s and 1.22 g/g, respect...

متن کامل

Steady State Operability Characteristics of an Adiabatic Fixed-Bed Reactor for Methanol Dehydration

Operability analysis as one of the most important bridges between process design and process control helps the process designer to investigate the control issues quite early in the design stage. Recently, Vinson and Georgakis suggested a steady state geometrical operability index as a quantitative measure for assessment of process operability. In...

متن کامل

DEVELOPMENT OF A PELLET SCALE MODEL FOR TRICKLE BED REACTOR USING CFD TECHNIQUES

In this study, a pellet scale model was developed for trickle bed reactor utilizing CFD techniques. Drag coefficients were calculated numerically at different velocities and bulk porosities in the case of single phase flow through the dry bed. The simulation results were then compared with the prediction of Kozeny-Carman (K-C) equation. The results indicated that drag coefficients calculated fr...

متن کامل

An in situ spatially resolved analytical technique to simultaneously probe gas phase reactions and temperature within the packed bed of a plug flow reactor.

This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. As an exemplar, we have examined a heterogeneously catalysed gas phase reaction within the bed of a powdered oxide supported metal catalyst. The design of the gas sampling and the temperat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001